
11

T3X Corp.

Delivering Fine Software Since 1895

13

Rules of the Game
A compiler is a program that reads the source code of a program

and outputs an executable for m of the same program. The most

impor tant aspect of a compiler the generation of correct code, i.e.

the executable program must perfor m exactly those actions which

the source program descr ibes.

Because a compiler is a program and translates programs from

source to executable for m, it may under some circumstances

compile itself. A compiler that compiles itself is called a self-

hosting compiler. The prerequisite for this to wor k is that the

source language and the implementation language of the compiler

are the same.

Generally, three languages are involved when talking about

compilers:

• the source language

• the target language

• the implementation language

The source language S is the language which the compiler

‘‘understands’’, i.e. the for m of the programs it reads. This is

typically a programming language, such as C, Pascal, or LISP.

Source Program Compiler Target Program

Source Language S
Implementation

Language I Target Language T

Figure 1: Compilation

The target language T is the machine language that the compiler

outputs, for example: machine code for a Z80 CPU or bytecode for

the Tcode Machine or the Java Vir tual Machine. Executables are

typically packaged in some executable file for mat, like JAR (Java

Archive), ELF (Executable and Linkable For mat), or COFF

(Common Object File For mat),

14 Rules of the Game

Since this book is about retro computing, though, more typical

output for mats would be the DOS or CP/M COM file, the DOS

EXE file, the REL (relocatable object) file, the OMF (Object

Module For mat) file (also known simply as an OBJ file), or the

loadable HEX file.

While the term ‘‘compilation’’ is not necessarily limited to the

transfor mation of a source program to an object program, as

illustrated in figure 1, the discussion in this book will only cover

this case.

Executable code is also called object code. Many compilers

generate linkable object code instead of executable object code. In

this case an additional program, a linker or linkage editor, is

required to construct an executable program.

This is mostly done in order to support concepts such as separate

compilation or add-on librar ies. In separate compilation, chunks of

a large program are compiled separately and then glued together

by the linker.

Source Source Source

Compiler

Object Object Object

Linker

Executable

Librar y

Figure 2: Separate Compilation with Linking

Rules of the Game 15

Run time librar ies are a part of most compiler infrastr uctures. They

provide pre-defined functions that can be used in a source

program. Separate librar ies are ver y common, but in some simple

cases, the compiler may generate the collection of pre-defined

functions directly instead of referr ing to an exter nal librar y. In this

case this collection may still be referred to as a ‘‘librar y’’, though,

as will be done in this book. Figure 2 summarizes the process of

separate compilation, librar ies, and linking.

The compiler described in this text uses the simplified model

introduced initially. It reads a single source program and translates

it directly to an executable file. All pre-defined functions are

generated by the compiler, there is no linker and no support for

additional run time librar ies.

17

The Language
The source language and implementation language used in this

book is a subset of an obscure, little, procedural language called

T3X. It is a tiny language that once had a tiny community, and it

was even used to write some real-life software, like its own

compiler and linker, an integrated development environment, a

database system, and a few simple games. It was also subject of

a few college courses, most probably because (1) it was

reasonably well defined and documented and (2) due to the size

of its community, nobody could be bothered to do your homework

assignments for you.

T3X looks like a mixture of Pascal, C, and BCPL. It has untyped

data and typed operators, which simplifies the compiler a lot, but

also leaves all the type checking to the programmer, which

requires some discipline on the side of the user — a perspective

that is not in vogue these days, where computing seems to be only

about productivity, safety, and security.

But this text is not about creating a product and making a shiny

web page about it. This is about diving right into the depths of the

matter and having some fun. And a fun language T3X is. It is

interesting to see how little you need to be able to write quite

comprehensible and expressive programs.

Syntax
Syntax is what a language looks like. T3X is a block-str uctured,

procedural language, which means that its programs describe

procedures for manipulating data, i.e. ‘‘what to do with data’’. It is

called block-str uctured, because it is str uctured language that

divides programs into blocks. A block is a chunk of source code

that describes a part of a procedure.

A str uctured language uses certain constructs to describe the flow

of control while a program executes, typically selection and loops

(repetition).

Source code of procedural languages is mostly organized in the

18 Syntax

form a hierarchy consisting of a programs, declarations (including

procedures and functions), statements, and expressions. The

most abstract view is the program, the least abstract one the

expression. See figure 3 for an illustration.

Program

Declaration

Statement

Expression

More Abstract

Less Abstract

Figure 3: Elements of Block-Str uctured Languages

In procedural languages:

• programs contain declarations, statements, and expressions

• declarations contain statements and expressions

• statements contain expressions

If you are familiar with C or Pascal or BCPL, the T3X syntax will

look quite familiar. Exhibit 4 displays the infamous bubblesor t

algor ithm in T3X.

The keywords are highlighted by using upper case in this example,

but this is not necessary and not usually done in actual code.

bubblesort(n,v) star ts the declaration of the procedure

bubblesort with the for mal arguments n and v. The body of the

procedure is a block statement (or compound statement) enclosed

in the keywords DO and END. The compound statement declares

the local var iables i, swapped , and tmp.

Syntax 19

Assignment is done by the := operator (and equality is expressed

with =). The statement FOR (i=0, n-1) counts from 0 to

n − 2. The ith element of a vector (or array) v is accessed using

v[i]. Elements are numbered v[0] . . . v[n − 1].

! This is a comment

bubblesort(n, v) DO VAR i, swapped, tmp;

swapped := %1;

WHILE (swapped) DO

swapped := 0;

FOR (i=0, n-1) DO

IF (v[i] > v[i+1]) DO

tmp := v[i];

v[i] := v[i+1];

v[i+1] := tmp;

swapped := %1;

END

END

END

END

Figure 4: Bubblesor t Procedure in T3X

The lexeme %1 denotes the number −1. You could also write -1,

but there is a subtle difference: the for mer is a value and the latter

is an operator applied to a value, which will not wor k in contexts

where a constant is expected.

Fur thermore, /\ and \/ denote logical (short-circuit) AND and

OR, and X->Y:Z means ‘‘if x then y else z’’, just like x?y:z in C.

IF with an ELSE is called IE (If/Else).

You will pick up the rest of the T3X syntax as we walk through the

compiler source code. If you are interested, there is a brief

introduction to T3X in the appendix.

20 Syntax

Semantics
Semantics is how the syntax is interpreted. Note that ‘‘inter preted’’

does not imply the use of interpreting software here. Inter pretation

can be done at var ious levels, and in the case of the T3X compiler

presented here, the code will eventually be interpreted by a Z80

CPU.

Inter pretation in this case is a question of meaning. What does a

statement like

WHILE (swapped) DO ... END

mean? To you, it is probably obvious that it means: ‘‘while the

value of swapped is a ‘true’ value, repeat everything between DO

and END’’.

But now we need to know what a ‘‘tr ue’’ value is and what

‘‘repetition’’ means. This is what the semantics of a language

descr ibes.

For example, the expressions v[i] and s::i both denote the ith

element of a vector. How ever, the first var iant descr ibes the ith

machine word in a vector of machine words, and the second one

descr ibes the ith byte in a byte vector.

In this book, semantics will be specified in three different ways:

• by diagrams describing program flow;

• by shor t machine code sequences that resemble the meaning of

a language construct;

• by simple mathematical for mulae.

For instance, the meaning of the [] operator in the expression

v[i] would be specified as follows, assuming that the value of i is

stored in the hl register and the address of v is on top of the stack.

add hl,hl hl = 2 ⋅ i

pop de de = v

add hl,de hl = address of v[i]

ld a,(hl) hl = (hl)

inc hl

Semantics 21

ld h,(hl)

ld l,a

The exact semantics of the T3X language will be explained in the

subsequent section and during the tour through the compiler

source code.

33

Compiling the Compiler
Because the T3X/0 compiler is self-hosting (i.e. it is written in its

own source language), it can compile its own source code.

However, when a new language is created, how do we get the

process started without an existing compiler?

This problem is widely known as the bootstrapping problem,

because it seems to be as hard as pulling oneself out of a swamp

by one’s own bootstraps (bootstraps being the small loops that are

attached to some boots to facilitate putting them on.)

Bootstrapping

Compiler

Source Code

(Language B)

Pre-Existing

B-Compiler

Bootstrapping

S-Compiler

(Stage 0)

Full Compiler

Source Code

(Language S)

S-Compiler

(Stage 1)

read

generate

Figure 9: Bootstrapping (gray boxes indicate binaries)

The process of bootstrapping is illustrated in figure 9. The goal of

the process is to create a compiler for language S without access

to a compiler for language S. The most common approach is to

wr ite a bootstrapping compiler for S in a different, pre-existing

language B, and use that compiler to create the stage-0 compiler

for S.

The stage-0 compiler is the result of bootstrapping a language S.

The bootstrapping language which the stage-0 compiler accepts is

34 Compiling the Compiler

often a subset S0 of S that is exactly sufficient to compile the initial

full S compiler.

Even if the stage-0 compiler covers the complete language S, it is

often ver y simple. For instance, it may not perfor m any

optimizations, have rudimentar y error reporting, or have limited

perfor mance. It may even be implemented as a simple interpreter,

because it only has to be run for one single time during the entire

bootstrapping process.

Once the stage-0 compiler exists, it can immediately be used to

compile the full compiler source code again, resulting in the

stage-1 compiler. If the stage-0 compiler implements a subset S0,

this will be the first compiler implementing the full source language

S. At this point, the bootstrapping problem is solved.

Bootstrapping the T3X/0 Compiler
The T3X/0 compiler package can be found at http://t3x.org.

It provides two ways to solve the bootstrapping problem by

including the following files:

• a bootstrapping compiler written in T3Xr7;

• a pre-compiled TCVM binary of the compiler and the C source

code for the TCVM.

After compiling the TCVM, which consists of about 300 lines of

por table C89 code, the TCVM binary of the compiler can

immediately be used to re-compile the compiler.

Otherwise, a full T3X Release 7 compiler has to be installed first,

which can then be used to bootstrap T3X/0. This method was

used to bootstrap the initial stage-0 binary of the T3X/0 compiler.

Testing the Compiler
A simple method for ver ifying that a self-hosting compiler is

perfor ming proper ly is the so-called tr iple test. This test re-

compiles the compiler with the stage-1 compiler, resulting in a

stage-2 compiler, and then re-iterates the process to generate a

stage-3 compiler. The process is depicted in figure 10. It is called

the ‘‘tr iple test’’, because it compiles the full compiler three times.

Testing the Compiler 35

Bootstrapping

Compiler

Source Code

Full Compiler Source Code

Pre-

existing

Compiler

Stage-0

Compiler

Stage-1

Compiler

Stage-2

Compiler

Stage-3

Compiler

equal stages

read

generate

Figure 10: Triple Test (light gray boxes indicate binaries)

As can be seen in the figure, the stage-2 compiler is the first

compiler that satisfies the following two conditions:

• it is a full compiler, i.e. it has been compiled from the full

compiler sources, so its source language is the full language S

and not a subset language S0;

• it has been compiled by a full compiler.

Stage 0 is the bootstrapping compiler, which is generated from a

completely different source code and probably only accepts a

subset language S0. Stage 1 is a full compiler, but has not been

compiled by a full compiler, Stage 2 is the first entirely self-

compiled compiler.

It can easily be seen in the diagram that the same conditions hold

for the stage-3 compiler. They would also hold for any subsequent

stages, so star ting at stages 2 and 3, we expect the compilers to

be identical, because they have been generated by identical

compilers. If this is the case, the triple test has been passed.

Note that the triple test is only a simple test and probably does not

cover the entire compiler source code. Passing the triple test is an

36 Testing the Compiler

essential step in the testing of the compiler, though. When this test

fails, the compiler cannot be assumed to generate correct code.

Some Bootstrapping Sessions
This section describes the process of bootstrapping the T3X/0

compiler with Unix and DOS as host systems and CP/M as the

target. It serves both as an example as well as instructions for

getting the compiler up and running on CP/M.

Building T3X/0 on Unix the Lazy Way

Note that what is described in this subsection is not really a

bootstrapping process, but merely the process of building the

T3X/0 compiler with a pre-existing T3X/0 compiler. The existing

compiler has been created using the process described in a later

subsection, which is currently the only way to bootstrap T3X/0

‘‘from nothing’’, i.e. without a pre-existing T3X/0 compiler.

However, the lazy way is sufficient for those who merely want to

have a T3X/0 compiler on CP/M (or a cross-compiler targeting

CP/M on Unix) for further exper iments.

Even if you decide to go the lazy route, it is still recommended to

read the following subsections, because they explain a lot of

details of the bootstrapping process, the components of the T3X/0

compiler, and its installation on CP/M.

The process of generating compilers for var ious host and target

platfor ms is automated in the bin/build.sh scr ipt, which is

contained in the T3X/0 distribution. Using this script, the cross-

compilation of the compiler for CP/M is as simple as unpacking the

T3X/0 source code archive and typing

make && bin/build.sh cpm cpm

This command will build

• the TCVM compiler emitting Tcode executables (txtrn.tc);

• the Tcode Virtual Machine (tcvm);

• a native T3X/0 compiler for CP/M (tx-cpm.com).

265

CP/M Example Program
Some functions of CP/M are not available in T3X/0, and the BDOS

interface of CP/M has to be used directly in order to access them.

For example, finding the names of all files on a specific drive is

such a function.

The program shown in this chapter implements an extended CP/M

‘‘dir’’ command that sorts the files found on a drive alphabetically

and also displays their sizes.

The program uses the CPM module, which defines the FCB (‘‘file

control block’’) structure, provides access to the internal file name

conversion function expandfn, and also offers mnemonic names

for all BDOS services.

! T3X/0 module: CP/M 2.2 BDOS Functions

! Nils M Holm, 2023

! In the public domain / 0BSD License

module cpm;

The FCB structure should be an old acquaintance at this point. Note that

it is a byte-field structure, so the proper way to define an FCB is

VAR Fcb::CPM.FCB;

and its fields must be accessed with the byte-subscr ipt operator x::y.

public const FCB = 36,

FCB_DISK = 0,

FCB_NAME = 1,

FCB_TYPE = 9,

FCB_ROBIT = 9,

FCB_SYSBIT = 10,

FCB_CHANGED = 11,

FCB_EXTENT = 12,

FCB_RECORDS = 15,

FCB_BLOCKS = 16,

266 CP/M Example Program

FCB_SEQREC = 32,

FCB_RANRECL = 33,

FCB_RANRECH = 34,

RCB_RANOVFL = 35;

The cpm.expandfn inline function jumps to the internal t_expandfn

function of the CP/M version of the T3X/0 core module via its jump table

entr y.

! jp 0x014d

public inline expandfn(2) = [0xc3, 0x4d, 0x01];

The following functions provide mnemonic names for the CP/M 2.2

BDOS functions. For example,

cpm.prints("Hello, World\r\n$")

would print the well-known message on the CP/M console via the BDOS

function BDPRINTS.

public sysreset() return t3x.bdos(0, 0);

public conin() return t3x.bdos(1, 0);

public conout(c) return t3x.bdos(2, c);

public readin() return t3x.bdos(3, 0);

public punout(c) return t3x.bdos(4, c);

public lstout(c) return t3x.bdos(5, c);

public conio(c) return t3x.bdos(6, c);

public getiob() return t3x.bdos(7, 0);

public setiob(iob) return t3x.bdos(8, iob);

public prints(s) return t3x.bdos(9, s);

public readcons(buf) return t3x.bdos(10, buf);

public constat() return t3x.bdos(11, 0);

public getver() return t3x.bdos(12, 0);

public dskreset() return t3x.bdos(13, 0);

public seldsk(dsk) return t3x.bdos(14, dsk);

public open(fcb_) return t3x.bdos(15, fcb_);

public close(fcb_) return t3x.bdos(16, fcb_);

public search(fcb_) return t3x.bdos(17, fcb_);

CP/M Example Program 267

public searchnext() return t3x.bdos(18, 0);

public erase(fcb_) return t3x.bdos(19, fcb_);

public readseq(fcb_) return t3x.bdos(20, fcb_);

public writeseq(fcb_) return t3x.bdos(21, fcb_);

public create(fcb_) return t3x.bdos(22, fcb_);

public rename(fcb_) return t3x.bdos(23, fcb_);

public getlogvec() return t3x.bdoshl(24, 0);

public getcurdsk() return t3x.bdos(25, 0);

public setdma(dma) return t3x.bdos(26, dma);

public getalvec() return t3x.bdoshl(27, 0);

public setdskro() return t3x.bdos(28, 0);

public getrodsks() return t3x.bdoshl(29, 0);

public setfat(fcb_) return t3x.bdos(30, fcb_);

public getdpb() return t3x.bdoshl(31, 0);

public getsetusr(n) return t3x.bdos(32, n);

public readran(fcb_) return t3x.bdos(33, fcb_);

public writeran(fcb_) return t3x.bdos(34, fcb_);

public getfsiz(fcb_) return t3x.bdos(35, fcb_);

public setranrec(fcb_) return t3x.bdos(36, fcb_);

public resetdsks(map) return t3x.bdos(37, map);

public writeranz(fcb_) return t3x.bdos(40, fcb_);

end

Here follows the code of the ‘‘cpmdir’’ program, which can be

found in the file ‘‘programs/cpmdir.t’’ in the T3X/0 source code

archive.

! List a CP/M directory with file sizes

! Nils M Holm, 2023

! Public Domain / 0BSD License

use t3x: t;

use cpm;

The maximum number of directory entr ies in a standard CP/M

floppy disk directory. Increase this for use on hard disks.

268 CP/M Example Program

const MAXFILES = 64;

FCB and DMA buffer for file I/O.

var Fcb::CPM.FCB;

var Buf::128;

A buffer for file names and a vector of pointers to the file names in

the buffer. Each file name in an FCB has a length of 11 characters.

var Files::MAXFILES*11;

var Ptrs[MAXFILES];

Compute the length of a string.

length(s) return t.memscan(s, 0, 32767);

Wr ite a NUL-ter minated str ing to the console.

writes(s) t.write(T3X.SYSOUT, s, length(s));

Wr ite a newline sequence to the console.

nl() do var b::3;

writes(t.newline(b));

end

Convert an unsigned number to ASCII and return a pointer to the

ASCII representation.

var ntoa_buf::10;

ntoa(x) do var i;

if (x = 0) return "0";

ntoa_buf::9 := 0;

CP/M Example Program 269

i := 9;

while (x) do

i := i-1;

ntoa_buf::i := x mod 10 + ’0’;

x := x / 10;

end

return @ntoa_buf::i;

end

Sor t the pointers to the files names in Ptrs so that they point to

names in lexicographic order. The sortdir function uses a

slightly optimized Bubblesor t algor ithm, which should be good

enough for sorting rather small directories.

sortdir(k) do var i, j, tmp, sw;

for (i=1, k) do

sw := 0;

for (j=0, k-i) do

if (t.memcomp(Ptrs[j],

Ptrs[j+1], 11) > 0)

do

tmp := Ptrs[j];

Ptrs[j] := Ptrs[j+1];

Ptrs[j+1] := tmp;

sw := 1;

end

end

if (\sw) leave;

end

end

Read all file names on the given disk and store them in the File

buffer and pointers to the names in the Ptrs vector. When a drive

letter is given insert it into the match string, otherwise use a match

str ing without a drive letter. In a file match ev ery question mark

will match any character in a file name, so a file match of the for m

????????.??? will match any file name. Note that the dot has a

special meaning in cpm.expandfn and must not be replaced with

270 CP/M Example Program

a question mark.

The cpm.search and cpm.searchnext functions both return a

director y code, which is an index into the DMA buffer. The search

functions read the directory one record at a time, and four

director y entr ies fit in a 128-byte record, so the functions return a

value in the range 0. . 3 upon success. To locate the directory

entr y in the buffer, the return value has to be multiplied by 32. The

layout of the name in the directory entr y is the same as in an FCB.

The readdir function returns the number of file names stored in

the Files buffer.

readdir(d) do var k, n, match;

match := "A:????????.???";

ie (d)

match::0 := d;

else

match := @match::2;

cpm.expandfn(match, Fcb);

cpm.setdma(Buf);

k := 0;

n := cpm.search(Fcb);

while (k < MAXFILES /\ n \= 255) do

Ptrs[k] := @Files::(k*11);

t.memcopy(Ptrs[k], @Buf::(1+n*32), 11);

k := k+1;

n := cpm.searchnext();

end

return k;

end

Retur n the size of the ith file in the buffer in kilobytes. The

cpm.getfsiz function returns the size of a file in records in the

random record fields of the FCB passed to it.

filesize(i) do

t.memcopy(@Fcb::CPM.FCB_NAME, Ptrs[i], 11);

cpm.getfsiz(Fcb);

CP/M Example Program 271

! ignoring FCB_RANOVF

return (Fcb::CPM.FCB_RANRECL +

Fcb::CPM.FCB_RANRECH * 256 + 7) / 8;

end

Pr int the size in kilobytes and the name of a file on the console.

printfile(i) do var n, j, s;

n := filesize(i);

s := ntoa(n);

for (j = length(s), 4) writes("\s");

writes(s);

writes("K\s\s");

t.write(T3X.SYSOUT, Ptrs[i], 8);

writes("\s");

t.write(T3X.SYSOUT, Ptrs[i]+8, 3);

end

Pr int all files in the directory in three sorted columns, separated by

colon characters.

const COLS = 3;

printdir(k) do var i, j, m, n;

ie (k mod COLS)

n := k / COLS + 1;

else

n := k / COLS;

i := 0;

for (i=0, n) do

m := i;

for (j=0, COLS) do

if (m < k) do

printfile(m);

if (m+n < k) writes(" : ");

end

m := m + n;

end

272 CP/M Example Program

nl();

end

end

Retur n the given character converted to upper case.

upcase(c) return ’a’ <= c /\ c <= ’z’-> c-32: c;

The main program accepts one command line argument, extracts

only the first character from it, and uses it as a drive letter. This

means that the commands

B>cpmdir a

B>cpmdir a:

B>cpmdir abracadabra

would all list the files on drive A:. When no drive letter is given,

the default drive is used. The program then reads the file names

on that drive into a buffer, sor ts them, and prints them.

do var d, k, b::2;

d := 0;

if (t.getarg(1, b, 2) >= 0)

d := upcase(b::0);

k := readdir(d);

sortdir(k);

printdir(k);

end

This is what the output of CPMDIR looks like:

17K CG T : 2K T3X T : 34K TXTRN T

6K CPMDIR COM : 34K TX0 COM

3K CPMDIR T : 2K TXEMIT T

273

Some Random Facts
The source code of the T3X/0 compiler for CP/M on the Z80 has a

total size of about 2330 lines or 50K bytes. The parser is the

largest part by far, which is typical for a simple compiler without

sophisticated code generation. The sizes of the individual

components are listed in figure 81, but, since the code of each

component is spread out over the entire file, these sizes are not

very accurate.

Component Size (Lines)

Symbol Table Management 100

Emitter 200

Scanner 290

Parser 1080

• Declarations 360

• Statements 250

• Expressions 400

Code Generator 190

Runtime Librar y Dump 250

Core Module 40

Miscellanea 180

Total 2330

Figure 81: Sizes of the Components of the Compiler

The runtime librar y dump alone has a size of about 10K bytes.

The Z80 assembly language code from which the run time librar y

is compiled has a size of 1200 lines and compiles to a binary of

1670 bytes.

The stage-3 executable of the compiler has a size of 34834 bytes

and self-compiles in less than 10 minutes on an 4MHz Z80 system

with its file system on an SRAM card. On a floppy-based system,

the compile time could be expected to be much longer, of course.

274 Some Random Facts

Figures 82 and 83 list some more compiler executable sizes and

self-compilation times for var ious systems. The sizes depend

much on the code density of the compiler output. Of course the

TCVM has the best density, because it has been designed for the

T3X/0 compiler. The Z80 back end typically emits more native

instr uctions per VSM instruction than the 8086 and 386 back

ends.

Targ et Word Siz e Siz e (Bytes)

TCVM 16-bit 21003

CP/M Z80 16-bit 34834

DOS 8086 16-bit 29181

FreeBSD 386 32-bit 39140

Figure 82: Compiler Executable Sizes

Speed File

System (MHz) System Time LPM LPM/MHz

CP/M Z80 4.00 SRAM
1

9m20s 251 63

DOS V20
2

4.77 CF
3

8m31s 274 58

CP/M Z80 7.40 CF 5m37s 434 59

FreeBSD

TCVM
4

1000.00 SSD
5

0.80s 164,000 164

FreeBSD

x86-64 1000.00 SSD 0.15s 933,000 933

Figure 83: Self-Compilation Speed, LPM = lines/minute

1 Static RAM card

2 8088-compatible

3 Compact Flash card

4 TCVM running on an x86-64

5 Solid State Disk

