confidence interval (CI)

An interval estimate (\rightarrow estimator) that specifies a range of values so that there is a given probability for an unknown parameter to lie within that range. The given probability is known as the level of confidence, c. A confidence interval is specified as
$P(a \leq X \leq b)=c$
i.e. there is a probability of c for the random variable X to take a value between (and including) a and b, where X follows the probability distribution of the unknown parameter. Typical values of c are $0.9,0.95,0.99$, and 0.999 . With increasing levels of confidence, the range of the confidence interval also increases.
Due to the central limit theorem, the random variable \bar{X}, which is the sampling distribution of the mean, is normally distributed $(\rightarrow$ normal distribution). So when the unknown parameter is μ, the population mean, and $X=\bar{X}$, then X can be normalized $(\rightarrow$ standard normal distribution), thereby transforming the above formula to

$$
P(-z \leq Z \leq z)=P\left(\frac{a-\hat{\mu}}{\sigma} \leq Z \leq \frac{b-\hat{\mu}}{\sigma}\right)=c
$$

At this point, the quantile function F_{Z}^{-1} of Z can be used to find the values for $\frac{a-\hat{\mu}}{\sigma}$ and $\frac{b-\hat{\mu}}{\sigma}$ and hence for a and b :

$$
z=F_{Z}^{-1}\left(c+\frac{\alpha}{2}\right)
$$

Because the normal distribution is a two-tailed distribution, half the size of the critical region has to be added to the confidence level c (where $\alpha=1-c$). Once z is known, the confidence interval can be specified as
$P(-z \sigma+\hat{\mu} \leq X \leq z \sigma+\hat{\mu})=c$
The meaning of this statement is that there is a $\alpha=1-c$ probability for the parameter μ to lie outside of the given interval while the sample X was skewed by chance. See also: hypothesis test, significance, level of significance.

Figure CFI: confidence interval on the standard normal distribution with confidence level $c=0.95$; light gray area: (probability of the) confidence interval; dark gray area: (probability of the) critical regions; significance level $\alpha=0.05$, two critical regions with probability $\frac{\alpha}{2}=0.025$.

Example: Given a sampling distribution of the mean \bar{X} of diameters of marbles with estimated mean $\hat{\mu}=12.5 \mathrm{~mm}$ and $\sigma=0.2 \mathrm{~mm}$, the confidence interval for the mean at a $c=0.95$ level of confidence would be computed as follows:
$P(-z \leq Z \leq z)=P\left(\frac{a-12.5}{0.2} \leq Z \leq \frac{b-12.5}{0.2}\right)=0.95$
$z=F_{Z}^{-1}\left(0.95+\frac{0.05}{2}\right) \approx 1.96$
$P(-1.96 \cdot 0.2+12.5 \leq X \leq 1.96 \cdot 0.2+12.5) \approx 0.95$
$P(12.11 \leq \bar{X} \leq 12.89) \approx 0.95$
I.e., the probability for the true mean μ of the diameter to not lie within the given interval (and the sample being skewed by chance) would be $1-0.95=0.05$. See figure CFI for an illustration.

