chi-square distribution $\left(X \sim \chi^{2}(v)\right)$
A continuous probability distribution that models the improbability of an outcome O given an expectation E, where both O and E may be multiple events. The χ^{2}-distribution maps a χ^{2} statistic $(\rightarrow$ chi-square statistic) to the improbability of O arising by chance given the expectation E.
A random variable $X \sim \chi^{2}(v)$ is χ^{2}-distributed with v (nu) degrees of freedom. Sometimes the notation $X \sim \chi_{v}^{2}$ is used instead. Often the symbol χ^{2} is also used to denote a χ^{2}-distributed random variable or a χ^{2} statistic, which can be confusing.

See figure XSD for a summary of the distribution and figure XSC for sample curves of the associated probability functions.

Figure XSC: χ^{2}-distribution probability functions; left: PDF of distributions with $v=1$ degrees of freedom (dashed), $v=3$ (solid), and $v=5$ (dotted); right: CDF with the same parameters

The following example describes a test for goodness of fit. For a test for independence, see contingency table.
If 67 white marbles and 33 black marbles are drawn from a box given the expectation that there is a fair chance for drawing either color, the resulting χ^{2} statistic would be
$\chi^{2}=\sum \frac{(67-50)^{2}}{50}=\frac{(67-50)^{2}}{50}=5.78$
Here the expectation would be $E(X)=50$, because $67+33=100$ marbles are drawn in total. The statistic could also use the distance 33-50 (white marbles minus expectation) instead,
because the squared deviation would be the same.
The χ^{2} test for goodness of fit used to find the improbability of the outcome has one degree of freedom here, because one marble count can be derived from the other. The CDF of the χ^{2}-distribution with one degree of freedom gives

$$
F_{\chi^{2}(1)}(5.78) \approx 0.984
$$

So the probability of the outcome to arise by chance given that the expectation is true is $p \approx 1-0.984=0.016$ and therefore the outcome does not fit the expectation well.

When this result would occur in the experiment of a hypothesis test, it might be significant (\rightarrow significance).

$X \sim \chi^{2}(v)$	
PDF	$f(x)=\frac{1}{2^{\frac{v}{2}} \cdot \Gamma\left(\frac{v}{2}\right)} \cdot x^{\frac{v}{2}-1} \cdot e^{-\frac{x}{2}}$
CDF	$F(x)=\frac{1}{2^{\frac{v}{2}} \cdot \Gamma\left(\frac{v}{2}\right)} \cdot \int_{0}^{x} w^{\frac{v}{2}-1} \cdot e^{-\frac{w}{2}} d w$
	$F(x)=P\left(\frac{v}{2}, \frac{x}{2}\right)$
Statistic	$x \in \mathbf{R}_{0}^{+}: \chi^{2}$ statistic
Parameter	$v \in \mathbf{N}^{+}:$degrees of freedom
μ	v
σ^{2}	$2 v$
Skewness $\left(\gamma_{1}\right)$	$\sqrt{\frac{8}{v}}$
Approximation	$\sqrt{2 \chi^{2}}-\sqrt{2 v-1} \sim N(0,1)$ for $v \geq 30$

Figure XSD: χ^{2}-distribution; $P(a, x)$ is the regularized incomplete Γ function, a common method for computing the CDF of the distribution

