chi-square distribution $(X \sim \chi^2(v))$

A continuous probability distribution that models the improbability of an outcome *O* given an expectation *E*, where both *O* and *E* may be multiple events. The χ^2 -distribution maps a χ^2 statistic (\rightarrow chi-square statistic) to the improbability of *O* arising by chance given the expectation *E*.

A random variable $X \sim \chi^2(v)$ is χ^2 -distributed with v (nu) *degrees* of freedom. Sometimes the notation $X \sim \chi^2_v$ is used instead. Often the symbol χ^2 is also used to denote a χ^2 -distributed random variable or a χ^2 statistic, which can be confusing.

See figure XSD for a summary of the distribution and figure XSC for sample curves of the associated probability functions.

Figure **XSC:** χ^2 -distribution probability functions; left: PDF of distributions with v = 1 degrees of freedom (dashed), v = 3 (solid), and v = 5 (dotted); right: CDF with the same parameters

The following example describes a test for goodness of fit. For a test for independence, see *contingency table*.

If 67 white marbles and 33 black marbles are drawn from a box given the expectation that there is a fair chance for drawing either color, the resulting χ^2 statistic would be

$$\chi^2 = \sum \frac{(67-50)^2}{50} = \frac{(67-50)^2}{50} = 5.78$$

Here the expectation would be E(X) = 50, because 67 + 33 = 100 marbles are drawn in total. The statistic could also use the distance 33 - 50 (white marbles minus expectation) instead,

because the squared deviation would be the same.

The χ^2 test for goodness of fit used to find the improbability of the outcome has one degree of freedom here, because one marble count can be derived from the other. The *CDF* of the χ^2 -distribution with one degree of freedom gives

 $F_{\chi^2(1)}(5.78) \approx 0.984$

So the probability of the outcome to arise by chance given that the expectation is true is $p \approx 1-0.984 = 0.016$ and therefore the outcome does not fit the expectation well.

When this result would occur in the *experiment* of a *hypothesis test*, it might be significant (\rightarrow *significance*).

$X \sim \chi^2(\nu)$	
PDF	$f(x) = \frac{1}{2^{\frac{\nu}{2}} \cdot \Gamma(\frac{\nu}{2})} \cdot x^{\frac{\nu}{2}-1} \cdot e^{-\frac{x}{2}}$
CDF	$F(x) = \frac{1}{2^{\frac{\nu}{2}} \cdot \Gamma(\frac{\nu}{2})} \cdot \int_{0}^{x} w^{\frac{\nu}{2}-1} \cdot e^{-\frac{w}{2}} dw$
	$F(x) = P(\frac{\nu}{2}, \frac{x}{2})$
Statistic	$x \in \mathbf{R}_0^+$: χ^2 statistic
Parameter	$v \in \mathbf{N}^+$: degrees of freedom
μ	V
σ^2	2v
Skewness (γ_1)	$\sqrt{\frac{8}{\nu}}$
Approximation	$\sqrt{2\chi^2} - \sqrt{2\nu - 1} \sim N(0, 1)$ for $\nu \ge 30$

Figure **XSD**: χ^2 -distribution; P(a, x) is the regularized incomplete Γ function, a common method for computing the CDF of the distribution