What to do with a high IQ?


All formulae are given in Klong notation. Click a formula to compute it.

Short summary: cdf(x) is the cumulative distribution function, i.e. the area under the bell curve from -infinity to x. The x parameter is given in σ, the returned value is a percentile normalized to the interval [0,1]. cdf(x1)-cdf(x0) is the area under the interval (x0,x1]. 1-cdf(x) is the size of the xth percentile. %1-cdf(x) is the size of the smallest sample containing one specimen in the xth percentile. rnd(x) rounds x to the nearest integer.

Formulae evaluate from the right to the left, so a-b-c equals a-(b-c). _x is floor, x%y is divide, %x is reciprocal, {x} is a function returning x. See the Klong page for more information.

All probabilities are expressed as real numbers in the interval [0,1], e.g. 99.7% is written as 0.997.

  1. cdf(1)-cdf(-1)
  2. cdf(3)
  3. _7.3e9*1-cdf(3)
  4. _7.3e9*1-cdf(4)
  5. _%1-cdf(4)
  6. {cdf((x-100)%15)}'[85 100 115 130 145 160 175]
  7. cdf(0)
  8. 1-cdf(2)
  9. 1-cdf(3)
  10. 1-cdf(4)
  11. {rnd(%1-cdf(x))}'[2 3 4 5 6]
  12. _%1-cdf(8)
  13. cdf((144-100)%15)-cdf((116-100)%15)
  14. cdf((164-100)%15)-cdf((136-100)%15)
  15. _%cdf((164-100)%15)-cdf((136-100)%15)
  16. W::15;{cdf(((x+W-1)-100)%15)-cdf(((x-W-1)-100)%15)}'130+5*!13
  17. W::15;{rnd(%25cdf(((x+W-1)-100)%15)-cdf(((x-W-1)-100)%15))}'130+5*!13
  18. {2*rnd(%cdf(((x+19)-100)%15)-cdf(((x-19)-100)%15))}'[149 150 155]
  19. _(%1-cdf(3.33333))%%1-cdf(2)
  20. (%1-cdf(2))*cdf((164-100)%15)-cdf((136-100)%15)
  21. (%1-cdf(2))*cdf((174-100)%15)-cdf((146-100)%15)
  22. cdf((174-100)%15)-cdf((146-100)%15)
  23. rnd(0.5*10000*cdf((164-100)%15)-cdf((136-100)%15))
  24. rnd((%1-cdf(0.8))*0.5*10000*cdf((164-100)%15)-cdf((136-100)%15))