http://t3x.org/iq/refs.html

# What to do with a high IQ?

## Formulae

All formulae are given in Klong notation.

Short summary: cdf(x) is the cumulative distribution function, i.e. the area under the bell curve from −infinity to x. The x parameter is given in σ, the returned value is a percentile normalized to the interval [0,1]. cdf(x1)−cdf(x0) is the area under the interval (x0,x1]. 1−cdf(x) is the size of the xth percentile. %1−cdf(x) is the size of the smallest sample containing one specimen in the xth percentile. rnd(x) rounds x to the nearest integer.

Formulae evaluate from the right to the left, so a−b−c equals a−(b−c). _x is floor, x%y is divide, %x is reciprocal, {x} is a function returning x. See the Klong page for more information.

All probabilities are expressed as real numbers in the interval [0,1], e.g. 99.7% is written as 0.997.

1. cdf(1)−cdf(−1)
2. cdf(3)
3. _7.3e9*1−cdf(3)
4. _7.3e9*1−cdf(4)
5. _%1−cdf(4)
6. {cdf((x−100)%15)}'[85 100 115 130 145 160 175]
7. cdf(0)
8. 1−cdf(2)
9. 1−cdf(3)
10. 1−cdf(4)
11. {rnd(%1−cdf(x))}'[2 3 4 5 6]
12. _%1−cdf(8)
13. cdf((144−100)%15)−cdf((116−100)%15)
14. cdf((164−100)%15)−cdf((136−100)%15)
15. _%cdf((164−100)%15)−cdf((136−100)%15)
16. W::15;{cdf(((x+W−1)−100)%15)−cdf(((x−W−1)−100)%15)}'130+5*!13
17. W::15;{rnd(%25cdf(((x+W−1)−100)%15)−cdf(((x−W−1)−100)%15))}'130+5*!13
18. {2*rnd(%cdf(((x+19)−100)%15)−cdf(((x−19)−100)%15))}'[149 150 155]
19. _(%1−cdf(3.33333))%%1−cdf(2)
20. (%1−cdf(2))*cdf((164−100)%15)−cdf((136−100)%15)
21. (%1−cdf(2))*cdf((174−100)%15)−cdf((146−100)%15)
22. cdf((174−100)%15)−cdf((146−100)%15)
23. rnd(0.5*10000*cdf((164−100)%15)−cdf((136−100)%15))
24. rnd((%1−cdf(0.8))*0.5*10000*cdf((164−100)%15)−cdf((136−100)%15))