Code from the paper

PROLOG Control in Six Slides

Nils M Holm, 2019

In the public domain or distributed under the CC0 (Creative Commons Zero) license where there is no such concept as the public domain.

Recursive control

(define (try g r e n)
  (if (null? r)
      (let* ((a  (copy (car r) (list n)))
             (ne (unify (car g) (car a) e)))
        (if ne
            (prove3 (append (cdr a) (cdr g)) ne (+ 1 n)))
        (try g (cdr r) e n))))

(define (prove3 g e n)
  (cond ((null? g)
          (print-frame e))
          (try g db e n))))

Control in six slides

Link structure / registers

(define link list)
(define L_l car)
(define L_g cadr)
(define L_r caddr)
(define L_e cadddr)
(define (L_n x) (car (cddddr x)))


(define (back5 l g r e n)
  (if (and (pair? g)
           (pair? r))
      (prove5 l g (cdr r) e n)
      (prove5 (L_l l)
              (L_g l)
              (cdr (L_r l))
              (L_e l)
              (L_n l))))

Iterative control

(define (prove5 l g r e n)
  (cond ((null? g)
          (print-frame e)
          (back5 l g r e n))
        ((null? r)
          (if (null? l)
              (back5 l g r e n)))
          (let* ((a  (copy (car r) n))
                 (e* (unify (car a) (car g) e)))
            (if e*
                (prove5 (link l g r e n)
                        (append (cdr a) (cdr g))
                        (+ 1 n))
                (back5 l g r e n))))))

Control in nine slides (with cut)

Cut point element / register

(define (L_c x) (cadr (cddddr x)))

(define (clear_r x)
  (set-car! (cddr x) '(())))

(define (back6 l g r e n c)
  (cond ((and (pair? g)
              (pair? r))
          (prove6 l g (cdr r) e n c))
        ((pair? l)
          (prove6 (L_l l)
                  (L_g l)
                  (cdr (L_r l))
                  (L_e l)
                  (L_n l)
                  (L_c l)))))

(define (prove6 l g r e n c)
    ((null? g)
      (print-frame e)
      (back6 l g r e n c))
    ((eq? '! (car g))
      (clear_r c)
      (prove6 c (cdr g) r e n c))
    ((eq? 'r! (car g))
      (prove6 l (cddr g) r e n
              (cadr g)))
    ((null? r)
      (if (null? l)
          (back6 l g r e n c)))
      (let* ((a  (copy (car r) n))
             (e* (unify (car a) (car g) e)))
        (if e*
            (prove6 (link l g r e n c)
                    (append (cdr a)
                            `(r! ,l)
                            (cdr g))
                    (+ 1 n)
            (back6 l g r e n c))))))

Unification and binding

(define empty '((bottom)))

(define var '?)
(define name cadr)
(define time cddr)

(define (var? x)
  (and (pair? x)
       (eq? var (car x))))

(define (lookup v e)
  (let ((id (name v))
        (t  (time v)))
    (let loop ((e e))
       (cond ((not (pair? (caar e)))
             ((and (eq? id (name (caar e)))
                   (eqv? t (time (caar e))))
               (car e))
               (loop (cdr e)))))))

(define (value x e)
  (if (var? x)
      (let ((v (lookup x e)))
        (if v
            (value (cadr v) e)

(define (copy x n)
  (cond ((not (pair? x)) x)
        ((var? x) (append x n))
          (cons (copy (car x) n)
                (copy (cdr x) n)))))

(define (bind x y e)
  (cons (list x y) e))

(define (unify x y e)
  (let ((x (value x e))
        (y (value y e)))
    (cond ((eq? x y) e)
          ((var? x) (bind x y e))
          ((var? y) (bind y x e))
          ((or (not (pair? x))
               (not (pair? y))) #f)
            (let ((e* (unify (car x) (car y) e)))
              (and e* (unify (cdr x) (cdr y) e*)))))))

Printing frames

(define (resolve x e)
  (cond ((not (pair? x)) x)
        ((var? x)
          (let ((v (value x e)))
            (if (var? v)
                (resolve v e))))
          (cons (resolve (car x) e)
                (resolve (cdr x) e)))))

(define (print-frame e)
  (let loop ((ee e))
    (cond ((pair? (cdr ee))
            (cond ((null? (time (caar ee)))
                    (display (cadaar ee))
                    (display " = ")
                    (display (resolve (caar ee) e))
            (loop (cdr ee))))))

Graph example from section 1

(define db
  '(((edge a b))
    ((edge a f))
    ((edge a g))
    ((edge b c))
    ((edge b d))
    ((edge c d))
    ((edge c e))
    ((edge g h))
    ((edge d h))
    ((edge h e))
    ((edge h f))

    ((path (? A) (? B) ((? A) (? B)))
     (edge (? A) (? B)))

    ((path (? A) (? B) ((? A) . (? CB)))
     (edge (? A) (? C))
     (path (? C) (? B) (? CB)))))

(define goals '((path a f (? P))))

Recursive PROVE

(prove3 goals empty 1)

6-slide PROVE

(prove5 '() goals db empty 1)

Negation as failure

(define db
  '(((some foo))
    ((some bar))
    ((some baz))

    ((eq (? X) (? X)))

    ((neq (? X) (? Y))
     (eq (? X) (? Y)) ! fail)

    ((neq (? X) (? Y)))))

(define goals '((some (? X))
                (some (? Y))
                (neq (? X) (? Y))))

9-slide PROVE

(prove6 '() goals db empty 1 '())

contact  |  privacy